exec_his2tdfΒΆ

This section contains the exec_his2tdf script.

Download file: exec_his2tdf.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

import datetime
import os
import os.path
import numpy
import time

from time import strftime
from sys import argv, exit
from glob import glob
from h5py import File as getHDF5
import stp_core.io.tdf as tdf

def _getHISdim ( HISfilename ):
    
    dim1 = 0
    dim2 = 0
    dimz = 0    
    bytecode = numpy.uint16
    
    # Open file:
    try:
        infile = open(HISfilename, "rb")

        # Get file infos:
        tot_bytes = os.path.getsize(HISfilename)

        # Read header:
        Image_tag = infile.read(2)
        Comment_len = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
        dim1 = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
        dim2 = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_) 
        dim1_offset = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
        dim2_offset = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
        HeaderType = numpy.fromstring(infile.read(2), numpy.uint16)[0]
        Dump = infile.read(50)
        Comment = infile.read(Comment_len)  

        # Set total number of bytes read so far:
        bytes_read = 64 + Comment_len   

        # Set image type:
        bpp = len(numpy.array(0, bytecode).tostring())
        
        # Define chunk size:
        chunksize = dim1 * dim2 * bpp
        
        # Determine number of expected projections:
        dimz = (tot_bytes - bytes_read) / (chunksize + 64) + 1  
        
    finally:
        # Close file:
        infile.close()  
        
    return (dim1, dim2, dimz, bytecode)
    


def _processHIS( HISfilename, dset, dset_offset, provenance_dset, provenance_offset, time_offset, prefix, crop_top, crop_bottom, crop_left, crop_right, logfilename, int_from=0, int_to=-1):

    # Open file:
    infile = open(HISfilename, "rb")

    # Get file infos:
    tot_bytes = os.path.getsize(HISfilename)

    # Read header:
    Image_tag = infile.read(2)
    Comment_len = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
    dim1 = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
    dim2 = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_) 
    dim1_offset = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
    dim2_offset = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
    HeaderType = numpy.fromstring(infile.read(2), numpy.uint16)[0]
    Dump = infile.read(50)
    Comment = infile.read(Comment_len)  

    # Set total number of bytes read so far:
    bytes_read = 64 + Comment_len   

    # Set image type:
    bytecode = numpy.uint16
    bpp = len(numpy.array(0, bytecode).tostring())
    
    # Define chunk size:
    chunksize = dim1 * dim2 * bpp
    
    # Determine number of expected projections:
    num_proj = (tot_bytes - bytes_read) / (chunksize + 64) + 1  
    
    # Read first projection:
    t1 = time.time()
    block = infile.read(chunksize)
    
    # Convert as numpy array:
    data = numpy.fromstring(block, bytecode)
    im = numpy.reshape( data, [dim2, dim1]) 
    im = im[crop_top:im.shape[0]-crop_bottom,crop_left:im.shape[1]-crop_right]  
    
    print numpy.amax(im[:])
    print dset.attrs['max']
    
    # Set minimum and maximum:
    if ( numpy.amin(im[:]) < float(dset.attrs['min']) ):
        dset.attrs['min'] = str(numpy.amin(im[:]))
    if ( numpy.amax(im[:]) > float(dset.attrs['max'])):
        dset.attrs['max'] = str(numpy.amax(im[:]))
        
    print numpy.amax(im[:])
    print dset.attrs['max']
        
    # Check extrema (int_to == -1 means all files) for the projections:
    if ( (int_to >= num_proj) or (int_to <= 0) ):
        int_to = num_proj - 1
    if ( (int_from >= num_proj) or (int_from < 0) ):
        int_from = 0    
        
    # Process first projection (fill HDF5):
    i = 0
    first_index = int(provenance_dset.attrs['first_index']) 
                        
    # Save processed image to HDF5 file:                                                
    #tifffile.imsave('tomo_' + str(i).zfill(4) + '.tif', data)
    if (i >= int_from) and (i <= int_to):   
        tdf.write_tomo(dset, i + dset_offset  - int_from,im)    
        
        # Save provenance metadata:
        t = time.time() + time_offset*3600          
        provenance_dset["filename", provenance_offset + i  - int_from] = prefix + '_' + str(i + dset_offset + first_index).zfill(4) 
        provenance_dset["timestamp", provenance_offset + i  - int_from] = numpy.string_(datetime.datetime.fromtimestamp(t).strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])
                
        # Print out execution time: 
        t2 = time.time()
        log = open(logfilename,"a")     
        log.write(os.linesep + "\t%s converted in %0.3f sec." % (provenance_dset["filename", provenance_offset + i  - int_from], t2 - t1))          
        log.close()     
    
    # Read all the other projections:   
    try:
        while block:        
                
            # Skip a few bytes:
            t1 = time.time()
            dump = infile.read(64)
            
            # Read the meaningful data:
            block = infile.read(chunksize)                      
            
            # Convert as numpy array:
            data  = numpy.fromstring(block, bytecode)
            im    = numpy.reshape( data, [dim2, dim1])          
            im    = im[crop_top:im.shape[0]-crop_bottom,crop_left:im.shape[1]-crop_right]   
                                    
            # Set minimum and maximum:
            if ( float(numpy.amin(im[:])) < float(dset.attrs['min']) ):             
                dset.attrs['min'] = str(numpy.amin(im[:]))              
            if ( float(numpy.amax(im[:])) > float(dset.attrs['max'])):              
                dset.attrs['max'] = str(numpy.amax(im[:]))              
            
            # Process first projection (fill HDF5):
            i = i + 1
                                
            # Save processed image to HDF5 file:                                                
            #tifffile.imsave('tomo_' + str(i).zfill(4) + '.tif', data)
            if (i >= int_from) and (i <= int_to):               
                tdf.write_tomo( dset, i + dset_offset - int_from,im )   
                
                # Save provenance metadata:
                t = time.time() + time_offset*3600          
                provenance_dset["filename", provenance_offset + i  - int_from] = prefix + '_' + str(i + dset_offset + first_index  - int_from).zfill(4)
                provenance_dset["timestamp", provenance_offset + i  - int_from] = numpy.string_(datetime.datetime.fromtimestamp(t).strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])
                            
                # Print out execution time: 
                t2 = time.time()
                log = open(logfilename,"a")     
                log.write(os.linesep + "\t%s converted in %0.3f sec." % (provenance_dset["filename", provenance_offset + i  - int_from], t2 - t1))          
                log.close() 
            
    except  Exception, e:   
        #log = open(logfilename,"a")        
        #log.write(str(e))          
        #log.close()
        pass
    
    finally: 
        # Close file:
        infile.close()

    return provenance_offset + i + 1


def main(argv):          
    """
    Converts a set of HIS files into a TDF file (HDF5 Tomo Data Format).
        
    Parameters
    ----------
    from : scalar, integer
        among all the projections (or sinogram) files, a subset of files can be specified, 
        ranging from the parameter "from" to the parameter "to" (see next). In most 
        cases, this parameter is 0.
        
    to : scalar, integer
        among all the projections (or sinogram) files, a subset of files can be specified, 
        ranging from the parameter "from" (see previous parameter) to the parameter 
        "to". If the value -1 is specified, all the projection files will be considered.
        
    data_in_path : string
        path of the HIS file of the projections (e.g. "Z:\\sample1.his").
    
    dark_in_path : string
        path of the HIS file of the flat (e.g. "Z:\\sample1_dark.his").
        
    flat_in_path : string
        path of the HIS file of the flat (e.g. "Z:\\sample1_flat.his").
            
    postdark_in_path : string
        path of the HIS file of the flat (e.g. "Z:\\sample1_postdark.his").
        
    postflat_in_path : string
        path of the HIS file of the flat (e.g. "Z:\\sample1_postflat.his").
        
    out_file : string
        path with filename of the TDF to create (e.g. "Z:\\sample1.tdf"). WARNING: the program 
        does NOT automatically create non-existing folders and subfolders specified in the path. 
        Moreover, if a file with the same name already exists it will be automatically deleted and 
        overwritten.
        
    crop_top : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the top of the image. Leave 0 for no cropping.
        
    crop_bottom : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the bottom of the image. Leave 0 for no cropping.
        
    crop_left : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the left of the image. Leave 0 for no cropping.
        
    crop_right : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the right of the image. Leave 0 for no cropping. 

    privilege_sino : boolean string
        specify the string "True" if the TDF will privilege a fast read/write of sinograms (the most common 
        case), "False" for fast read/write of projections.
        
    compression : scalar, integer
        an integer value in the range of [1,9] to be used as GZIP compression factor in the HDF5 file, where
        1 is the minimum compression (and maximum speed) and 9 is the maximum (and slow) compression.
        The value 0 can be specified with the meaning of no compression.
        
    log_file : string
        path with filename of a log file (e.g. "R:\\log.txt") where info about the conversion is reported.

    Returns
    -------
    no return value
        
    Example
    -------
    Example call to convert all the tomo*.tif* projections to a TDF with no cropping and minimum compression:
    
        python his2tdf.py 0 -1 "tomo.his" "dark.his" "flat.his" "postdark.his" "postflat.his" "dataset.tdf" 0 0 0 0 
        True True 1 "S:\\conversion.txt"
    
    Requirements
    -------
    - Python 2.7 with the latest NumPy, SciPy, H5Py.
    - tdf.py
    
    Tests
    -------
    Tested with WinPython-64bit-2.7.6.3 (Windows) and Anaconda 2.1.0 (Linux 64-bit).        
    
    """ 
    
    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1]) # -1 means "all files"
       
    # Get paths:
    tomo_file = argv[2]
    dark_file = argv[3]
    flat_file = argv[4]
    darkpost_file = argv[5]
    flatpost_file = argv[6]
    
    outfile = argv[7]
    
    crop_top      = int(argv[8])  # 0 for all means "no cropping"
    crop_bottom = int(argv[9])
    crop_left      = int(argv[10])
    crop_right    = int(argv[11])
        
    projorder = argv[12]
    if projorder == "True":
        projorder = True
    else:
        projorder = False
        
    privilege_sino = argv[13]
    if privilege_sino == "True":
        privilege_sino = True
    else:
        privilege_sino = False

    # Get compression factor:
    compr_opts = int(argv[14])
    compressionFlag = True;
    if (compr_opts <= 0):
        compressionFlag = False;
    elif (compr_opts > 9):
        compr_opts = 9      
        
    logfilename = argv[15]      

    # Get the files in inpath:
    log = open(logfilename,"w") 
    log.write(os.linesep + "\tInput HIS files:")    
    log.write(os.linesep + "\t\tProjections: %s" % (tomo_file))
    log.write(os.linesep + "\t\tDark: %s" % (dark_file))
    log.write(os.linesep + "\t\tFlat: %s" % (flat_file))
    log.write(os.linesep + "\t\tPost dark: %s" % (darkpost_file))
    log.write(os.linesep + "\t\tPost flat: %s" % (flatpost_file))
    log.write(os.linesep + "\tOutput TDF file: %s" % (outfile))     
    log.write(os.linesep + "\t--------------")          
    log.write(os.linesep + "\tCropping:")
    log.write(os.linesep + "\t\tTop: %d pixels" % (crop_top))
    log.write(os.linesep + "\t\tBottom: %d pixels" % (crop_bottom))
    log.write(os.linesep + "\t\tLeft: %d pixels" % (crop_left))
    log.write(os.linesep + "\t\tRight: %d pixels" % (crop_right))
    if (int_to != -1):
        log.write(os.linesep + "\tThe subset [%d,%d] of the input files will be considered." % (int_from, int_to))
    
    if (projorder):
        log.write(os.linesep + "\tProjection order assumed.")
    else:
        log.write(os.linesep + "\tSinogram order assumed.")
        
    if (privilege_sino):
        log.write(os.linesep + "\tFast I/O for sinograms privileged.")
    else:
        log.write(os.linesep + "\tFast I/O for projections privileged.")
    
    if (compressionFlag):
        log.write(os.linesep + "\tTDF compression factor: %d" % (compr_opts))
    else:
        log.write(os.linesep + "\tTDF compression: none.")

    log.write(os.linesep + "\t--------------")  
    log.close()
    
    # Remove a previous copy of output:
    if os.path.exists(outfile):
        log = open(logfilename,"a")
        log.write(os.linesep + "\tWarning: an output file with the same name was overwritten.")
        os.remove(outfile)
        log.close() 
            
    # Check input file:
    if not os.path.exists(tomo_file):       
        log = open(logfilename,"a")
        log.write(os.linesep + "\tError: input HIS file for projections does not exist. Process will end.")             
        log.close()         
        exit()  
        
    # First time get the plan:
    log = open(logfilename,"a")
    log.write(os.linesep + "\tPreparing the work plan...")  
    log.close()
            
    # Get info from projection file:
    dim1, dim2, dimz, dtype = _getHISdim ( tomo_file )  
    
    
    if ( ((int_to - int_from + 1) > 0) and ((int_to - int_from + 1) < dimz) ):
        dimz = int_to - int_from + 1
                        
    #dsetshape = (num_files,) + im.shape
    if projorder:           
        #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], im.shape[0], num_files)
        dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, dimz)
    else:
        #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], num_files, im.shape[0])
        dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, dimz)
        
    f = getHDF5( outfile, 'w' )
    print dsetshape
        
    f.attrs['version'] = '1.0'
    f.attrs['implements'] = "exchange:provenance"
    echange_group  = f.create_group( 'exchange' )           
            
    if (compressionFlag):
        dset = f.create_dataset('exchange/data', dsetshape, dtype, chunks=tdf.get_dset_chunks(dim1 - crop_left - crop_right), compression="gzip", compression_opts=compr_opts, shuffle=True, fletcher32=True)
    else:
        dset = f.create_dataset('exchange/data', dsetshape, dtype)      

    if privilege_sino:          
        dset.attrs['axes'] = "y:theta:x"
    else:
        dset.attrs['axes'] = "theta:y:x"
            
    dset.attrs['min'] = str(numpy.iinfo(dtype).max)
    dset.attrs['max'] = str(numpy.iinfo(dtype).min)

    # Get the total number of files to consider:
    num_darks = 0
    num_flats = 0
    num_postdarks = 0
    num_postflats = 0
            
    if os.path.exists(dark_file):   
        dim1, dim2, num_darks, dtype = _getHISdim ( dark_file ) 
    if os.path.exists(flat_file):   
        dim1, dim2, num_flats, dtype = _getHISdim ( flat_file ) 
    if os.path.exists(darkpost_file):   
        dim1, dim2, num_postdarks, dtype = _getHISdim ( darkpost_file )     
    if os.path.exists(flatpost_file):   
        dim1, dim2, num_postflats, dtype = _getHISdim ( flatpost_file ) 
            
    tot_files = dimz + num_darks + num_flats + num_postdarks + num_postflats
                
    # Create provenance dataset:
    provenance_dt    = numpy.dtype([("filename", numpy.dtype("S255")), ("timestamp",  numpy.dtype("S255"))])
    metadata_group  = f.create_group( 'provenance' )
    provenance_dset = metadata_group.create_dataset('detector_output', (tot_files,), dtype=provenance_dt)   
            
    provenance_dset.attrs['tomo_prefix'] = 'tomo';
    provenance_dset.attrs['dark_prefix'] = 'dark';
    provenance_dset.attrs['flat_prefix'] = 'flat';
    provenance_dset.attrs['first_index'] = 1;
            
    # Handle the metadata:
    if (os.path.isfile(os.path.dirname(tomo_file) + os.sep + 'logfile.xml')):
        with open (os.path.dirname(tomo_file) + os.sep + 'logfile.xml', "r") as file:
            xml_command = file.read()
        tdf.parse_metadata(f, xml_command)              

    # Print out about plan preparation:
    first_done = True
    log = open(logfilename,"a")
    log.write(os.linesep + "\tWork plan prepared succesfully.") 
    log.close()             
        
        
    # Get the data from HIS:
    if (num_darks > 0) or (num_postdarks > 0):
        #dsetshape = (num_files,) + im.shape
        if projorder:           
            #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], im.shape[0], num_files)
            dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, num_darks + num_postdarks)
        else:
            #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], num_files, im.shape[0])
            dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, num_darks + num_postdarks)
        
        if (compressionFlag):
            darkdset = f.create_dataset('exchange/data_dark', dsetshape, dtype, chunks=tdf.get_dset_chunks(dim1 - crop_left - crop_right), compression="gzip", compression_opts=compr_opts, shuffle=True, fletcher32=True)
        else:
            darkdset = f.create_dataset('exchange/data_dark', dsetshape, dtype)     

        if privilege_sino:          
            darkdset.attrs['axes'] = "y:theta:x"
        else:
            darkdset.attrs['axes'] = "theta:y:x"
            
        darkdset.attrs['min'] = str(numpy.iinfo(dtype).max)
        darkdset.attrs['max'] = str(numpy.iinfo(dtype).min)
    else:
        log = open(logfilename,"a")
        log.write(os.linesep + "\tWarning: dark images (if any) not considered.")       
        log.close()     
            
    if (num_flats > 0) or (num_postflats > 0):
        
        #dsetshape = (num_files,) + im.shape
        if projorder:           
            #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], im.shape[0], num_files)
            dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, num_flats + num_postflats)
        else:
            #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], num_files, im.shape[0])
            dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, num_flats + num_postflats)
        
        if (compressionFlag):
            flatdset = f.create_dataset('exchange/data_white', dsetshape, dtype, chunks=tdf.get_dset_chunks(dim1 - crop_left - crop_right), compression="gzip", compression_opts=compr_opts, shuffle=True, fletcher32=True)
        else:
            flatdset = f.create_dataset('exchange/data_white', dsetshape, dtype)        

        if privilege_sino:          
            flatdset.attrs['axes'] = "y:theta:x"
        else:
            flatdset.attrs['axes'] = "theta:y:x"
            
        flatdset.attrs['min'] = str(numpy.iinfo(dtype).max)
        flatdset.attrs['max'] = str(numpy.iinfo(dtype).min)
        
    else:
        log = open(logfilename,"a")
        log.write(os.linesep + "\tWarning: flat images (if any) not considered.")       
        log.close()
            
    # Process the HIS:
    provenance_offset = 0
        
    if num_flats > 0:
        provenance_offset = _processHIS( flat_file, flatdset, 0, provenance_dset, provenance_offset, 
            0, 'flat', crop_top, crop_bottom, crop_left, crop_right, logfilename )  
    if num_postflats > 0:
        provenance_offset = _processHIS( flatpost_file, flatdset, num_flats, provenance_dset, provenance_offset, 
            7, 'flat', crop_top, crop_bottom, crop_left, crop_right, logfilename )

    if num_darks > 0:
        provenance_offset = _processHIS( dark_file, darkdset, 0, provenance_dset, provenance_offset,  
            0, 'dark', crop_top, crop_bottom, crop_left, crop_right, logfilename )  
    if num_postdarks > 0:
        provenance_offset = _processHIS( darkpost_file, darkdset, num_darks, provenance_dset, provenance_offset, 
            7, 'dark', crop_top, crop_bottom, crop_left, crop_right, logfilename )

    provenance_offset = _processHIS( tomo_file, dset, 0, provenance_dset, provenance_offset, 
            0, 'tomo', crop_top, crop_bottom, crop_left, crop_right, logfilename, int_from, int_to )    

    
    # Close TDF:
    f.close()   
    
if __name__ == "__main__":
    main(argv[1:])