exec_preprocessingΒΆ

This section contains the exec_preprocessing script.

Download file: exec_preprocessing.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: August, 8th 2016
#

from sys import argv, exit
from os import remove, sep,  linesep
from os.path import exists
from numpy import float32, amin, amax, isscalar
from time import time
from multiprocessing import Process, Lock

# pystp-specific:
from stp_core.preprocess.extfov_correction import extfov_correction
from stp_core.preprocess.flat_fielding import flat_fielding
from stp_core.preprocess.dynamic_flatfielding import dff_prepare_plan, dynamic_flat_fielding
from stp_core.preprocess.ring_correction import ring_correction
from stp_core.preprocess.extract_flatdark import extract_flatdark, _medianize

from h5py import File as getHDF5

# pystp-specific:
import stp_core.io.tdf as tdf


def _write_data(lock, im, index, outfile, outshape, outtype, logfilename, cputime, itime):            

    lock.acquire()
    try:        
        t0 = time()             
        f_out = getHDF5( outfile, 'a' )                  
        f_out_dset = f_out.require_dataset('exchange/data', outshape, outtype, chunks=tdf.get_dset_chunks(outshape[0])) 
        tdf.write_sino(f_out_dset,index,im.astype(float32))
                    
        # Set minimum and maximum:
        if ( amin(im[:]) < float(f_out_dset.attrs['min']) ):
            f_out_dset.attrs['min'] = str(amin(im[:]))
        if ( amax(im[:]) > float(f_out_dset.attrs['max'])):
            f_out_dset.attrs['max'] = str(amax(im[:]))      
        f_out.close()           
        t1 = time() 

        # Print out execution time:
        log = open(logfilename,"a")
        log.write(linesep + "\tsino_%s processed (CPU: %0.3f sec - I/O: %0.3f sec)." % (str(index).zfill(4), cputime, t1 - t0 + itime))
        log.close() 

    finally:
        lock.release()  

def _process (lock, int_from, int_to, infile, outfile, outshape, outtype, skipflat, plan, norm_sx, norm_dx, flat_end, 
             half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, dynamic_ff, EFF, 
             filtEFF, im_dark, logfilename):

    # Process the required subset of images:
    for i in range(int_from, int_to + 1):                 
                
        # Read input image:
        t0 = time()
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        im = tdf.read_sino(dset,i).astype(float32)      
        f_in.close()
        t1 = time()         

        # Perform pre-processing (flat fielding, extended FOV, ring removal):   
        if not skipflat:
            if dynamic_ff:
                # Dynamic flat fielding with downsampling = 2:
                im = dynamic_flat_fielding(im, i, EFF, filtEFF, 2, im_dark, norm_sx, norm_dx)
            else:
                im = flat_fielding(im, i, plan, flat_end, half_half, half_half_line, norm_sx, norm_dx)          
        im = extfov_correction(im, ext_fov, ext_fov_rot_right, ext_fov_overlap)
        if not skipflat and not dynamic_ff:
            im = ring_correction (im, ringrem, flat_end, plan['skip_flat_after'], half_half, half_half_line, ext_fov)
        else:
            im = ring_correction (im, ringrem, False, False, half_half, half_half_line, ext_fov)
        t2 = time()         
                                
        # Save processed image to HDF5 file (atomic procedure - lock used):
        _write_data(lock, im, i, outfile, outshape, outtype, logfilename, t2 - t1, t1 - t0)


def main(argv):          
    """To do...

    Usage
    -----
    
    Parameters
    ---------
           
    Example
    -------
    The following line processes the first ten TIFF files of input path 
    "/home/in" and saves the processed files to "/home/out" with the 
    application of the Boin and Haibel filter with smoothing via a Butterworth
    filter of order 4 and cutoff frequency 0.01:

    destripe /home/in /home/out 1 10 1 0.01 4    

    """
    lock = Lock()

    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1])
       
    # Get paths:
    infile = argv[2]
    outfile = argv[3]
    
    # Normalization parameters:
    norm_sx = int(argv[4])
    norm_dx = int(argv[5])
    
    # Params for flat fielding with post flats/darks:
    flat_end = True if argv[6] == "True" else False
    half_half = True if argv[7] == "True" else False
    half_half_line = int(argv[8])
        
    # Params for extended FOV:
    ext_fov = True if argv[9] == "True" else False
    ext_fov_rot_right = argv[10]
    if ext_fov_rot_right == "True":
        ext_fov_rot_right = True
        if (ext_fov):
            norm_sx = 0
    else:
        ext_fov_rot_right = False
        if (ext_fov):
            norm_dx = 0     
    ext_fov_overlap = int(argv[11])
        
    # Method and parameters coded into a string:
    ringrem = argv[12]  

    # Flat fielding method (conventional or dynamic):
    dynamic_ff = True if argv[13] == "True" else False
    
    # Nr of threads and log file:
    nr_threads = int(argv[14])
    logfilename = argv[15]      




    # Log input parameters:
    log = open(logfilename,"w")
    log.write(linesep + "\tInput TDF file: %s" % (infile))  
    log.write(linesep + "\tOutput TDF file: %s" % (outfile))        
    log.write(linesep + "\t--------------") 
    log.write(linesep + "\tOpening input dataset...")   
    log.close()
    
    # Remove a previous copy of output:
    if exists(outfile):
        remove(outfile)
    
    # Open the HDF5 file:   
    f_in = getHDF5(infile, 'r')


    if "/tomo" in f_in:
        dset = f_in['tomo']

        tomoprefix = 'tomo'
        flatprefix = 'flat'
        darkprefix = 'dark'
    else: 
        dset = f_in['exchange/data']
        if "/provenance/detector_output" in f_in:
            prov_dset = f_in['provenance/detector_output']      
    
            tomoprefix = prov_dset.attrs['tomo_prefix']
            flatprefix = prov_dset.attrs['flat_prefix']
            darkprefix = prov_dset.attrs['dark_prefix']
            
    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)
    
    if (num_sinos == 0):
        log = open(logfilename,"a")
        log.write(linesep + "\tNo projections found. Process will end.")    
        log.close()         
        exit()      

    # Check extrema (int_to == -1 means all files):
    if ((int_to >= num_sinos) or (int_to == -1)):
        int_to = num_sinos - 1

    # Prepare the work plan for flat and dark images:
    log = open(logfilename,"a")
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tPreparing the work plan...")             
    log.close()

    # Extract flat and darks:
    skipflat = False
    skipdark = False

    # Following variables make sense only for dynamic flat fielding:
    EFF = -1
    filtEFF = -1
    im_dark = -1
    
    # Following variable makes sense only for conventional flat fielding:
    plan = -1

    if not dynamic_ff:
        plan = extract_flatdark(f_in, flat_end, logfilename)
        if (isscalar(plan['im_flat']) and isscalar(plan['im_flat_after']) ):
            skipflat = True
        else:
            skipflat = False        
    else:
        # Dynamic flat fielding:
        if "/tomo" in f_in:             
            if "/flat" in f_in:
                flat_dset = f_in['flat']
                if "/dark" in f_in:
                    im_dark = _medianize(f_in['dark'])
                else:                                       
                    skipdark = True
            else:
                skipflat = True # Nothing to do in this case            
        else: 
            if "/exchange/data_white" in f_in:
                flat_dset = f_in['/exchange/data_white']
                if "/exchange/data_dark" in f_in:
                    im_dark = _medianize(f_in['/exchange/data_dark'])
                else:                   
                    skipdark = True
            else:
                skipflat = True # Nothing to do in this case
    
        # Prepare plan for dynamic flat fielding with 16 repetitions:   
        if not skipflat:    
            EFF, filtEFF = dff_prepare_plan(flat_dset, 16, im_dark)
    
    # Outfile shape can be determined only after first processing in ext FOV mode:
    if (ext_fov):

        # Read input sino:
        idx = num_sinos / 2
        im = tdf.read_sino(dset,idx).astype(float32)                
        im = extfov_correction(im, ext_fov, ext_fov_rot_right, ext_fov_overlap)
        
        # Get the corrected outshape:       
        outshape = tdf.get_dset_shape(im.shape[1], num_sinos, im.shape[0])      

    else:
        # Get the corrected outshape (in this case it's easy):
        im = tdf.read_tomo(dset,0).astype(float32)  
        outshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_proj)           
    
    # Create the output HDF5 file:  
    f_out = getHDF5(outfile, 'w')
    f_out_dset = f_out.create_dataset('exchange/data', outshape, im.dtype) 
    f_out_dset.attrs['min'] = str(amin(im[:]))
    f_out_dset.attrs['max'] = str(amax(im[:]))
    f_out_dset.attrs['version'] = '1.0'
    f_out_dset.attrs['axes'] = "y:theta:x"

    f_out.close()
    f_in.close()
        
    # Log infos:
    log = open(logfilename,"a")
    log.write(linesep + "\tWork plan prepared correctly.")  
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tPerforming pre processing...")           
    log.close() 

    # Run several threads for independent computation without waiting for threads completion:
    for num in range(nr_threads):
        start = (num_sinos / nr_threads)*num
        if (num == nr_threads - 1):
            end = num_sinos - 1
        else:
            end = (num_sinos / nr_threads)*(num + 1) - 1
        Process(target=_process, args=(lock, start, end, infile, outfile, outshape, im.dtype, skipflat, plan, norm_sx, 
                norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
                dynamic_ff, EFF, filtEFF, im_dark, logfilename )).start()


    #start = int_from # 0
    #end = int_to # num_sinos - 1
    #_process(lock, start, end, infile, outfile, outshape, im.dtype, skipflat, plan, norm_sx, 
    #           norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
    #           dynamic_ff, EFF, filtEFF, im_dark, logfilename)

    #255 256 C:\Temp\BrunGeorgos.tdf C:\Temp\BrunGeorgos_corr.tdf 0 0 True True 900 False False 0 rivers:11;0 False 1 C:\Temp\log_00.txt

    
if __name__ == "__main__":
    main(argv[1:])